THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 11 Solutions
 15th April 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. (a) Regard $f(x)=x^{4}+1$ as a polynomial in $\mathbb{C}[x]$, by the fundamental theorem of algebra, it has 4 roots counting multiplicities. And more generally, given a real polynomial $f(x) \in \mathbb{R}[x]$, if $\alpha \in \mathbb{C}$ is a complex root, then its complex conjugate $\bar{\alpha}$ is also a root, this is because complex conjugation is an automorphism of \mathbb{C} which fixes the subfield $\mathbb{R} \subset \mathbb{C}$, therefore $0=\overline{f(\alpha)}=\bar{f}(\bar{\alpha})=f(\bar{\alpha})$, where \bar{f} is the polynomial obtained from taking conjugates of all coefficients.
Therefore if $\alpha \in \mathbb{C} \backslash \mathbb{R}$, the factor $(x-\alpha)(x-\bar{\alpha})=x^{2}-(\alpha+\bar{\alpha})+\alpha \bar{\alpha}$ divides $f(x)$, and has real coefficients. So it is an irreducible factor. By induction, we see that any real polynomial has irreducible factors of degree 1 or 2 .
In the present case, simply for degree reason, $f(x)=x^{4}+1$ is reducible in $\mathbb{R}[x]$. Specificcally, one may factorize it as $x^{4}+1=x^{4}+2 x^{2}+1-2 x^{2}=\left(x^{2}+1\right)^{2}-$ $(\sqrt{2} x)^{2}=\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right)$. It is simple to see that the quadratic factors are irreducible as they have no real roots.
(b) Since $\mathbb{Q}[x] \subset \mathbb{R}[x]$, part (a) shows a factorization of $x^{4}+1$ into irreducible in $\mathbb{R}[x]$, which admits unique factorization property. If it was possible to factorize $x^{4}+1$ into nontrivial factors over $\mathbb{Q}[x]$, then such a factorization holds also in $\mathbb{R}[x]$. This would contradict unique factorization property. So $x^{4}+1$ must be irreducible in $\mathbb{Q}[x]$.
(c) The polynomial is irreducible in $\mathbb{Z}[x]$ according to Eisenstein's criterion when applied to the prime 11 . So by Gauss' theorem it is irreducible in $\mathbb{Q}[x]$.
(d) This is a cyclotomic polynomial, its irreducibility over $\mathbb{Z}[x]$ is a consequence of Eisenstein's criterion for the prime 5 , so Gauss' theorem implies that it is irreducible over $\mathbb{Q}[x]$.
(e) A degree 3 polynomial over $F[x]$ where F is a field, is irreducible if and only if it has no linear factor, which is equivalent to that it has not root in F. By proposition 12.1.1, we know that if $x^{3}-7 x^{2}+3 x+3$ has a root, then it must be a rational number q that when written in reduced fraction form $q=s / t$, we have s dividing 3 and t dividing 1 , therefore $q= \pm 1$ or ± 3. It is clear that by direct checking 1 is a root, therefore it is reducible.
(f) Similar to previous question, we simply have to check whether $x^{3}-5$ has a root in \mathbb{Z}_{11}. Here we compute:

$$
\begin{array}{|c|c|c|c|c|c|}
x & 0 & 1 & 2 & 3 & \ldots \\
x^{3}-5 & 6 & 7 & 3 & 0 & \ldots
\end{array}
$$

As we see quickly, 3 is a root of $x^{3}-5$, therefore $x-3$ is a factor. So it is reducible.
(g) A degree 4 polynomial is reducible if and only if it is either a product of two degree 2 irreducibles or it contains a linear factor. As we can compute directly, $f(x)=$ $x^{4}+x+1$ has $f(0)=f(1)=1$. So it has no roots in \mathbb{Z}_{2}. So it is reducible, it must be a product of degree 2 irreducible polynomials.
Note that the degree 2 polynomials in $\mathbb{Z}_{2}[x]$ are $x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1$. It is clear that the first three are all reducible, as they have roots in \mathbb{Z}_{2}. So there is only one irreducible degree 2 polynomial. So if $f(x)$ was reducible, it must be equal to $\left(x^{2}+x+1\right)^{2}$. This computes to $x^{4}+x^{2}+1$, which is not equal to $f(x)$. So $f(x)$ is in fact irreducible.
2. Assuming Gauss' theorem, if $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ is a polynomial with integer coefficients, and $q=s / t \in \mathbb{Q}$ is a rational root written in reduced form. Then $x-q$ is a factor of $f(x)$ in $\mathbb{Q}[x]$. Gauss's theorem implies that there is a linear polynomial in $\mathbb{Z}[x]$ that divides $f(x)$. The primitive of $x-q$ is given by $t x-s \in \mathbb{Z}[x]$. Therefore $f(x)=(t x-s) p(x)$ for some $p(x) \in \mathbb{Z}[x]$, from this, it is clear that t divides a_{n} and s divides a_{0}.
3. Suppose that $\underline{f}(x)=x^{n}+5 x^{n-1}+3=g(x) h(x)$ for some polynomials $g, h \in \mathbb{Z}[x]$. Then we denote \bar{g}, \bar{h}, etc by the corresponding polynomial in $\mathbb{Z}_{3}[x]$. We have $x^{n-1}(x+5)=\bar{g} \cdot \bar{h}$. Since $\mathbb{Z}_{3}[x]$ has unique factorization, we know that without loss of generality, up to units, $\bar{g}=x^{i}$ and $\bar{h}=x^{j}(x+5)$ where $i+j=n-1$.
Now notice that if i or j is nonzero, then the constant coefficients of \bar{g}, \bar{h} are 0 , therefore the constant coefficients of g, h are divisible by 3 . So $f=g h$ has constant coefficient 3 divisible by 9 , that is a contradiction. So we must have either $i=0$ or $j=0$.
If $j=0$, then $\bar{g}=x^{n-1}$ and $\bar{h}=x+5$. That implies that $h(x)$ is a linear polynomial. Therefore $f(x)$ would have integer roots by proposition 12.1.1, the root if exists must be ± 1 or ± 3. We can directly check that none of these is a root of $f(x): f(1)=9$, $f(-1)=-1$ when n is even and $f(-1)=7$ when n is odd; $f(3)>0$ clearly and $f(-3)=2(-3)^{n-1}+3$ is never 0 . So it is impossible to have linear factors, and this case is rejected.
So the only possibility is $i=0$, in which case $\bar{g}=1$ and $\bar{h}=x^{n-1}(x+5)$. So $f(x)$ is irreducible.
4. Suppose that $f(x)=\prod_{k=1}^{n}\left(x-a_{i}\right)-1$ is reducible over $\mathbb{Q}[x]$, by Gauss lemma it is reducible over $\mathbb{Z}[x]$ as well. Write $f(x)=g(x) h(x)$ for some monic polynomials $g, h \in \mathbb{Z}[x]$, since f is monic, we have $\operatorname{deg} g, \operatorname{deg} h<\operatorname{deg} f$. Note that $f\left(a_{i}\right)=$ $g\left(a_{i}\right) h\left(a_{i}\right)=-1$. Therefore $g\left(a_{i}\right)$ and $h\left(a_{i}\right)$ take values ± 1 with opposite signs. Therefore $g\left(a_{i}\right)+h\left(a_{i}\right)=0$ for $i=1, \ldots, n$. Since $\operatorname{deg}(g+h) \leq \max \{\operatorname{deg} f, \operatorname{deg} g\}<\operatorname{deg} f=$ n, according to the fundamental theorem of algebra, it is impossible for a nonzero polynomial of degree less than n having n distinct roots.
The only possibility is that $g+h=0$, so n is even and $f(x)=-g(x)^{2}$. This also leads to a contradiction as the leading coefficient of LHS is 1 and -1 on the RHS. So $f(x)$ must be irreducible.
5. (a) The content of this exercise (and other generalities about Gaussian integers, etc, won't appear in the exams.)
Recall that in $\mathbb{Z}[i]$, there is a norm function $N(a+b i):=a^{2}+b^{2}$ that satisfies the property that if $a+b i$ divides $c+d i$, then $N(a+b i)$ divides $N(c+d i)$. We
have $2=(1+i)(1-i)=N(1+i)$. Now $N(z)=1$ if and only if z is a unit, i.e. $z= \pm 1$ or $\pm i$. So we see that $1+i$ is an irreducible (a prime) in $\mathbb{Z}[i]$. By a generalization of proposition 12.1.1, if $x^{4}-4 x+2$ has a root in $\mathbb{Z}[i]$, it must be $\pm 1, \pm i, \pm(1+i), \pm(1-i), \pm 2$ or $\pm 2 i$. Note that for $\pm i, \pm(1+i), \pm(1-i)$ or $\pm 2 i$, the x^{4} term evaluates to a real number, so they are clearly not roots of $x^{4}-4 x+2$. For $\pm 1, \pm 2$, directly checking also shows that they are not roots.
So if $x^{4}-4 x+2$ is reducible, it must be a product of two degree 2 irreducible polynomials.
(b) Consider now $x^{4}-4 x+2$ over \mathbb{Z}_{5}. Note that 2 is a root, as $2^{4}-8+2=0 \in \mathbb{Z}_{5}$. By long division, one calculates $x^{4}-4 x+2=(x-2)\left(x^{3}+2 x^{2}+4 x+4\right)$. And $p(x)=x^{3}+2 x^{2}+4 x+4$ is irreducible in \mathbb{Z}_{5} since it has no roots: $p(0)=4, p(1)=$ $1, p(2)=3, p(3)=1, p(4)=1$.
(c) Recall that $\mathbb{Z}[i] /(2-i) \cong \mathbb{Z}_{5}$, so there is a surjective map $\mathbb{Z}[i] \rightarrow \mathbb{Z}_{5}$ by sending $a+b i \mapsto a+2 b \bmod 5$. Therefore if $f(x)$ was reducible in $\mathbb{Z}[i]$, it is a product of two degree 2 polynomials, when passed to \mathbb{Z}_{5}, we may write $f(x)$ has a product of two degree 2 polynomials in $\mathbb{Z}_{5}[x]$ (which may not be irreducible). This is a contradiction, as the factorization types do not agree (it contradicts unique factorization in $\mathbb{Z}_{5}[x]$.)
6. No. It is not a field in general. For example, for a prime number p, regarded as a constant polynomial, is irreducible in $\mathbb{Z}[x]$. And the quotient ring $\mathbb{Z}[x] /(p) \cong \mathbb{Z}_{p}[x]$ is not a field, as $x+(p)$ is not invertible. If $f(x)$ is a higher degree irreducible polynomials in $\mathbb{Z}[x]$. We claim that $\mathbb{Z}[x] /(f(x))$ has characteristic 0 , and $n>1$ is non-invertible in the quotient ring, for some suitable n.
7. No, if they were isomorphic, let $\varphi: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{3})$ be an isomorphism, then $\varphi(\sqrt{2})^{2}=$ $\varphi\left(\sqrt{2}^{2}\right)=\varphi(2)=2$ implies that 2 has a square root in $\mathbb{Q}(\sqrt{3})$ as well. Let $a+b \sqrt{3}$ be a square root, then $(a+b \sqrt{3})^{2}=2$ yields $a^{2}+3 b^{2}+2 a b \sqrt{3}=2$ for $a, b \in \mathbb{Q}$. So either a or b is equal to 0 , either case is impossible as both 2 and $\frac{2}{3}$ does not have square roots in \mathbb{Q}.

