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1. (a) Regard f(x) = x4 + 1 as a polynomial in C[x], by the fundamental theorem of
algebra, it has 4 roots counting multiplicities. And more generally, given a real
polynomial f(x) ∈ R[x], if α ∈ C is a complex root, then its complex conjugate ᾱ
is also a root, this is because complex conjugation is an automorphism of C which
fixes the subfield R ⊂ C, therefore 0 = f(α) = f̄(ᾱ) = f(ᾱ), where f̄ is the
polynomial obtained from taking conjugates of all coefficients.
Therefore if α ∈ C \ R, the factor (x − α)(x − ᾱ) = x2 − (α + ᾱ) + αᾱ divides
f(x), and has real coefficients. So it is an irreducible factor. By induction, we see
that any real polynomial has irreducible factors of degree 1 or 2.
In the present case, simply for degree reason, f(x) = x4 + 1 is reducible in R[x].
Specificcally, one may factorize it as x4 + 1 = x4 + 2x2 + 1 − 2x2 = (x2 + 1)2 −
(
√
2x)2 = (x2 +

√
2x + 1)(x2 −

√
2x + 1). It is simple to see that the quadratic

factors are irreducible as they have no real roots.

(b) Since Q[x] ⊂ R[x], part (a) shows a factorization of x4 + 1 into irreducible in R[x],
which admits unique factorization property. If it was possible to factorize x4+1 into
nontrivial factors over Q[x], then such a factorization holds also in R[x]. This would
contradict unique factorization property. So x4 + 1 must be irreducible in Q[x].

(c) The polynomial is irreducible in Z[x] according to Eisenstein’s criterion when ap-
plied to the prime 11. So by Gauss’ theorem it is irreducible in Q[x].

(d) This is a cyclotomic polynomial, its irreducibility over Z[x] is a consequence of
Eisenstein’s criterion for the prime 5, so Gauss’ theorem implies that it is irreducible
over Q[x].

(e) A degree 3 polynomial over F [x] where F is a field, is irreducible if and only if it
has no linear factor, which is equivalent to that it has not root in F . By proposition
12.1.1, we know that if x3 − 7x2 + 3x + 3 has a root, then it must be a rational
number q that when written in reduced fraction form q = s/t, we have s dividing 3
and t dividing 1, therefore q = ±1 or ±3. It is clear that by direct checking 1 is a
root, therefore it is reducible.

(f) Similar to previous question, we simply have to check whether x3 − 5 has a root in
Z11. Here we compute:

x 0 1 2 3 ...
x3 − 5 6 7 3 0 ...

As we see quickly, 3 is a root of x3−5, therefore x−3 is a factor. So it is reducible.



(g) A degree 4 polynomial is reducible if and only if it is either a product of two degree
2 irreducibles or it contains a linear factor. As we can compute directly, f(x) =
x4 + x+ 1 has f(0) = f(1) = 1. So it has no roots in Z2. So it is reducible, it must
be a product of degree 2 irreducible polynomials.
Note that the degree 2 polynomials in Z2[x] are x2, x2 + 1, x2 + x, x2 + x+ 1. It is
clear that the first three are all reducible, as they have roots in Z2. So there is only
one irreducible degree 2 polynomial. So if f(x) was reducible, it must be equal to
(x2 + x+1)2. This computes to x4 + x2 +1, which is not equal to f(x). So f(x) is
in fact irreducible.

2. Assuming Gauss’ theorem, if f(x) =
∑n

i=0 aix
i is a polynomial with integer coefficients,

and q = s/t ∈ Q is a rational root written in reduced form. Then x− q is a factor of f(x)
in Q[x]. Gauss’s theorem implies that there is a linear polynomial in Z[x] that divides
f(x). The primitive of x − q is given by tx − s ∈ Z[x]. Therefore f(x) = (tx − s)p(x)
for some p(x) ∈ Z[x], from this, it is clear that t divides an and s divides a0.

3. Suppose that f(x) = xn+5xn−1+3 = g(x)h(x) for some polynomials g, h ∈ Z[x]. Then
we denote g, h, etc by the corresponding polynomial in Z3[x]. We have xn−1(x+5) = g·h.
Since Z3[x] has unique factorization, we know that without loss of generality, up to units,
g = xi and h = xj(x+ 5) where i+ j = n− 1.

Now notice that if i or j is nonzero, then the constant coefficients of g, h are 0, therefore
the constant coefficients of g, h are divisible by 3. So f = gh has constant coefficient 3
divisible by 9, that is a contradiction. So we must have either i = 0 or j = 0.

If j = 0, then g = xn−1 and h = x + 5. That implies that h(x) is a linear polynomial.
Therefore f(x) would have integer roots by proposition 12.1.1, the root if exists must
be ±1 or ±3. We can directly check that none of these is a root of f(x): f(1) = 9,
f(−1) = −1 when n is even and f(−1) = 7 when n is odd; f(3) > 0 clearly and
f(−3) = 2(−3)n−1 +3 is never 0. So it is impossible to have linear factors, and this case
is rejected.

So the only possibility is i = 0, in which case g = 1 and h = xn−1(x + 5). So f(x) is
irreducible.

4. Suppose that f(x) =
∏n

k=1(x − ai) − 1 is reducible over Q[x], by Gauss lemma it
is reducible over Z[x] as well. Write f(x) = g(x)h(x) for some monic polynomi-
als g, h ∈ Z[x], since f is monic, we have deg g, deg h < deg f . Note that f(ai) =
g(ai)h(ai) = −1. Therefore g(ai) and h(ai) take values ±1 with opposite signs. There-
fore g(ai)+h(ai) = 0 for i = 1, ..., n. Since deg(g+h) ≤ max{deg f, deg g} < deg f =
n, according to the fundamental theorem of algebra, it is impossible for a nonzero poly-
nomial of degree less than n having n distinct roots.

The only possibility is that g+h = 0, so n is even and f(x) = −g(x)2. This also leads to
a contradiction as the leading coefficient of LHS is 1 and −1 on the RHS. So f(x) must
be irreducible.

5. (a) The content of this exercise (and other generalities about Gaussian integers, etc,
won’t appear in the exams.)
Recall that in Z[i], there is a norm function N(a + bi) := a2 + b2 that satisfies
the property that if a + bi divides c + di, then N(a + bi) divides N(c + di). We



have 2 = (1 + i)(1 − i) = N(1 + i). Now N(z) = 1 if and only if z is a unit,
i.e. z = ±1 or ±i. So we see that 1 + i is an irreducible (a prime) in Z[i]. By a
generalization of proposition 12.1.1, if x4 − 4x + 2 has a root in Z[i], it must be
±1,±i,±(1 + i),±(1− i),±2 or ±2i. Note that for ±i,±(1 + i),±(1− i) or ±2i,
the x4 term evaluates to a real number, so they are clearly not roots of x4 − 4x+ 2.
For ±1,±2, directly checking also shows that they are not roots.
So if x4 − 4x + 2 is reducible, it must be a product of two degree 2 irreducible
polynomials.

(b) Consider now x4 − 4x + 2 over Z5. Note that 2 is a root, as 24 − 8 + 2 = 0 ∈ Z5.
By long division, one calculates x4 − 4x + 2 = (x − 2)(x3 + 2x2 + 4x + 4). And
p(x) = x3+2x2+4x+4 is irreducible in Z5 since it has no roots: p(0) = 4, p(1) =
1, p(2) = 3, p(3) = 1, p(4) = 1.

(c) Recall that Z[i]/(2 − i) ∼= Z5, so there is a surjective map Z[i] → Z5 by sending
a+ bi 7→ a+ 2b mod 5. Therefore if f(x) was reducible in Z[i], it is a product of
two degree 2 polynomials, when passed to Z5, we may write f(x) has a product of
two degree 2 polynomials in Z5[x] (which may not be irreducible). This is a contra-
diction, as the factorization types do not agree (it contradicts unique factorization in
Z5[x].)

6. No. It is not a field in general. For example, for a prime number p, regarded as a constant
polynomial, is irreducible in Z[x]. And the quotient ring Z[x]/(p) ∼= Zp[x] is not a field,
as x+(p) is not invertible. If f(x) is a higher degree irreducible polynomials in Z[x]. We
claim that Z[x]/(f(x)) has characteristic 0, and n > 1 is non-invertible in the quotient
ring, for some suitable n.

7. No, if they were isomorphic, let φ : Q(
√
2) → Q(

√
3) be an isomorphism, then φ(

√
2)2 =

φ(
√
2
2
) = φ(2) = 2 implies that 2 has a square root in Q(

√
3) as well. Let a+ b

√
3 be a

square root, then (a+ b
√
3)2 = 2 yields a2 + 3b2 + 2ab

√
3 = 2 for a, b ∈ Q. So either a

or b is equal to 0, either case is impossible as both 2 and 2
3

does not have square roots in
Q.


